38 research outputs found

    The differences between the branded and generic medicines using solid dosage forms: In-vitro dissolution testing

    Get PDF
    AbstractIntroductionDissolution is the amount of substance that goes into solution per unit time under standardised conditions of liquid/solid interface, solvent composition and temperature. Dissolution is one of the most important tools to predict the in-vivo bioavailability and in some cases to determine bioequivalence and assure interchangeability.AimTo compare the differences in dissolution behaviour of solid dosage forms between innovators (reference products) and their generic counterparts (tested products).MethodsFour replicates for each batch of 37 tested medicines was carried out using A PT-DT70 dissolution tester from Pharma Test. A total of 13 branded medicines and 24 generic counterparts were obtained locally and internationally to detect any differences in their dissolution behaviour. They were tested according to the British Pharmacopeia, European Pharmacopeia and the US Pharmacopeia with the rate of dissolution determined by ultra-violet Spectrophotometery.ResultsMost tested medicines complied with the pharmacopoeial specifications and achieved 85% dissolution in 60min. However, some generic medicines showed significant differences in dissolution rate at 60 and 120min. Many generic medicines showed a slower dissolution rate than their branded counterparts such as the generic forms of omeprazole 20mg. Some showed an incomplete dissolution such as the generic form of nifedipine 10mg. Other generics showed faster dissolution rate than their branded counterpart such as the generic forms of meloxicam 15mg. Moreover, some generics from different batches of the same manufacturer showed significant differences in their dissolution rate such as the generic forms of meloxicam 7.5mg. Nevertheless, some generic medicines violated the EMA and the FDA guidelines for industry when they failed to achieve 85% dissolution at 60min, such as the generic form of diclofenac sodium 50mg.ConclusionMost medicines in this study complied with the pharmacopeial limits. However, some generics dissolved differently than their branded counterparts. This can clearly question the interchangeability between the branded and its generic counterpart or even among generics

    The Neonatal and Paediatric Pharmacokinetics of Antimicrobials study (NAPPA): investigating amoxicillin, benzylpenicillin, flucloxacillin and piperacillin pharmacokinetics from birth to adolescence

    Get PDF
    Background: Pharmacokinetic (PK) data underlying paediatric penicillin dosing remain limited, especially in critical care.// Objectives: The primary objective of the Neonatal and Paediatric Pharmacokinetics of Antimicrobials study (NAPPA) was to characterize PK profiles of commonly used penicillins using data obtained during routine care, to further understanding of PK variability and inform future evidence-based dosing.// Methods: NAPPA was a multicentre study of amoxicillin, co-amoxiclav, benzylpenicillin, flucloxacillin and piperacillin/tazobactam. Patients were recruited with informed consent. Antibiotic dosing followed standard of care. PK samples were obtained opportunistically or at optimal times, frozen and analysed using UPLC with tandem MS. Pharmacometric analysis was undertaken using NONMEM software (v7.3). Model-based simulations (n = 10 000) tested PTA with British National Formulary for Children (BNFC) and WHO dosing. The study had ethical approval.// Results: For the combined IV PK model, 963 PK samples from 370 participants were analysed simultaneously incorporating amoxicillin, benzylpenicillin, flucloxacillin and piperacillin data. BNFC high-dose regimen simulations gave these PTA results (median fT>MIC at breakpoints of specified pathogens): amoxicillin 100% (Streptococcus pneumoniae); benzylpenicillin 100% (Group B Streptococcus); flucloxacillin 48% (MSSA); and piperacillin 100% (Pseudomonas aeruginosa). Oral population PK models for flucloxacillin and amoxicillin enabled estimation of first-order absorption rate constants (1.16 h−1 and 1.3 h−1) and bioavailability terms (62.7% and 58.7%, respectively).// Conclusions: NAPPA represents, to our knowledge, the largest prospective combined paediatric penicillin PK study undertaken to date, and the first paediatric flucloxacillin oral PK model. The PTA results provide evidence supportive of BNFC high-dose IV regimens for amoxicillin, benzylpenicillin and piperacillin

    Effects of High Flavanol Dark Chocolate on Cardiovascular Function and Platelet Aggregation.

    Get PDF
    Regular consumption of chocolate and cocoa products has been linked to reduced cardiovascular mortality. This study compared the effects of high flavanol dark chocolate (HFDC; 1064mg flavanols/day for 6 weeks) and low flavanol dark chocolate (LFDC; 88mg flavanols/day for 6 weeks) on blood pressure, heart rate, vascular function and platelet aggregation in men with pre-hypertension or mild hypertension. Vascular function was assessed by pulse wave analysis using radial artery applanation tonometry in combination with inhaled salbutamol (0.4 mg) to assess changes due to endothelium-dependent vasodilatation. HFDC did not significantly reduce blood pressure compared to baseline or LFDC. Heart rate was increased by LFDC compared to baseline, but not by HFDC. Vascular responses to salbutamol tended to be greater after HFDC. Platelet aggregation induced by collagen or the thromboxane analogue U46619 was unchanged after LFDC or HFDC, whereas both chocolates reduced responses to ADP and the thrombin receptor activator peptide, SFLLRNamide (TRAP6), relative to baseline. Pre-incubation of platelets with theobromine also attenuated platelet aggregation induced by ADP or TRAP6. We conclude that consumption of HFDC confers modest improvements in cardiovascular function. Platelet aggregation is modulated by a flavanol-independent mechanism that is likely due to theobromine.This study was supported by a grant (to R. Corder) from Barry Callebaut Belgium N

    Utilization of data below the analytical limit of quantitation in pharmacokinetic analysis and modeling: promoting interdisciplinary debate

    Get PDF
    Traditionally, bioanalytical laboratories do not report actual concentrations for samples with results below the LOQ (BLQ) in pharmacokinetic studies. BLQ values are outside the method calibration range established during validation and no data are available to support the reliability of these values. However, ignoring BLQ data can contribute to bias and imprecision in model-based pharmacokinetic analyses. From this perspective, routine use of BLQ data would be advantageous. We would like to initiate an interdisciplinary debate on this important topic by summarizing the current concepts and use of BLQ data by regulators, pharmacometricians and bioanalysts. Through introducing the limit of detection and evaluating its variability, BLQ data could be released and utilized appropriately for pharmacokinetic research

    Book Reviews

    No full text
    corecore